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Abstract. The dielectric permittivity tensor for incommensurately modulated phases in insulating
crystals is considered. The main attention is paid to the spatial dispersion giving rise to optical
gyration effects and the influence of the modulation phase on those effects. General properties of the
dielectric tensor are analysed in relation to the lattice and incommensurate superlattice periodicity
requirements, the Onsager principle and the condition of absence of the radiation losses in the optical
medium. The structure of the microscopic components of the tensor and a macroscopic averaging
procedure for the plane-wave modulation region are discussed. The possibility of existence of an
anti-Hermitian part in the dielectric tensor of lossless incommensurate crystals originating from
the modulation-induced spatial dispersion is revealed. The performed analysis shows a necessity
for introduction into the constitutive equation of the term including spatial derivatives of the optical
activity tensor.

1. Introduction

In the last decade optics of the insulating crystals possessing intermediate phases with
incommensurately modulated superstructure has been extensively explored. A particular
example for those materials is the crystals of A2BX4 family [1], of which crystal optical
properties have been a subject of a permanent interest of researchers [2]. Within the above field,
we should at least mention the problem of the optical activity effect observed in incommensurate
(IC) phases of some A2BX4 crystals, which has been widely disputed in the literature (see, e.g.
[3–7] and references therein). Since the effect is in no simple way compatible with the inversion
symmetry of the average structure of the IC phase, it still needs a detailed experimental and
theoretical investigation.

From the viewpoint of electrodynamics, the response of the nonmagnetic IC crystals on the
electromagnetic wave at optical frequency is determined by the dielectric permittivity tensor.
General properties of this tensor were discussed in a number of studies (e.g. [3, 8–12]). Golovko
and Levanyuk [8] and Fousek and Kroupa [9] described the dielectric function as a property
deviating locally from that determined by the average symmetry. Instead of concept of the local
symmetry, Meekes and Janner [3] worked in terms of the superspace groups which represented
a full description of the IC phases. It was shown that, despite the orthorhombic basic structure,
the superspace symmetry did not forbid the existence of real off-diagonal components of the
dielectric tensor, as well as the gyration tensor. Stasyuk and Shvaika [11] developed further the
approach [3] and, in particular, discussed some properties of the microscopic dielectric tensor.
Finally, Dijkstra et al [12] gave a general characterization of the dielectric properties of the
IC phases at optical frequencies, including the transition from a microscopic to macroscopic
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level. It was revealed that the permittivity tensor should be regarded as periodic along the IC
modulation direction, with the mesoscopic spatial period.

The aim of the present work is to consider the main features of the dielectric tensor for the
IC crystals and analyse the points related to the symmetry of that part of the tensor originating
from a non-locality of the optical response, i.e. the spatial dispersion effect. We are mainly
interested in considering a plane-wave modulation region of the IC phases which is the simplest
to deal with analytically. The mentioned subject has been in brief regarded in our preliminary
study [13].

2. Basic constitute equation and microscopic components of the dielectric tensor

Let us consider a general case of a linear optical medium. From the standpoint of
phenomenological electrodynamics, the response of the medium on the field of electro-
magnetic wave is not local in time and space, i.e. it is determined by the effects of both
time (or frequency) and spatial dispersions. The corresponding constitutive equation is as
follows (summation over repeated indices is henceforth understood) [14]:

Di(t, r) =
∫ ∫

εij (t, t
′, r, r′, )Ej (t

′, r′) dt ′dr′ (1)

where E and D are the electric field and displacement vectors of the electromagnetic wave, ε

the kernel of the integral operator defining the optical response and the indices refer to Cartesian
coordinates. Crystalline media are homogeneous in time (εij (t, t ′, r, r′) = εij (τ, r, r

′),
where τ = t − t ′), but spatially inhomogeneous on the microscopic level due to a lattice
periodicity. However, a model of a continuous medium can be arrived at in the classical optics
after appropriate macroscopic averaging [14], resulting in εij (τ, r, r

′) = εij (τ,R), where
R = r − r′.

When the IC modulation is present, there exists an extra inhomogeneity whose period is
not commensurate with respect to the underlying lattice. It can be therefore shown that the IC
crystal should be regarded as inhomogeneous already on the macroscopic scale. One may treat
this situation in terms of additional dependence of the kernel εij (τ,R, r) on the coordinate r

[15]. Another equivalent approach suggested by Shvaika et al [10] and Stasyuk and Shvaika
[11] (see also Janner and Janssen [16]) is to describe the inhomogeneity imposed by a periodic
modulation via a formal dependence of the optical parameters on the phase ϕ of the modulation
wave. Then the equation (1) may be modified to

Di(t, r, ϕ) =
∫ ∫ ∫

εij (τ, r, r
′, ϕ, ϕ′)Ej (t

′, r′, ϕ′) dt ′ dr′ dϕ′ (2)

where a possible non-locality in ϕ is taken into account. Making a standard Fourier
transformation of (2), one has

Di(ω, r, ϕ) =
∫ ∫

εij (ω, r, r
′, ϕ, ϕ′)Ej (ω, r

′, ϕ′) dr′ dϕ′ (3)

with

εij (ω, r, r
′, ϕ, ϕ′) = (2π)−1

∫
εij (τ, r, r

′, ϕ, ϕ′) eiωτdτ. (4)

In what follows we shall disregard the influence of frequency dependence of the permittivity
tensor on the optical properties of the IC crystals, paying instead closest attention to the spatial
dispersion effects.
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The tensor εij (ω, r, r
′, ϕ, ϕ′) should be invariant with respect to the transformations

included in the corresponding superspace symmetry group of the IC phase (see, e.g. [16]).
In particular, for the translation subgroup of the latter one has

εij (ω, r, r
′, ϕ, ϕ′) = εij (ω, r + n, r′ + n, ϕ + qICn, ϕ′ + qICn) (5)

where qIC is the IC modulation wave vector, n = liai the translation vectors of the underlying
lattice of the parent phase, ai the three basic lattice vectors and li integers.

The dielectric function that answers the demand (5) may be written in the form (see also
Agranovich and Ginzburg [14])

εij (ω, r, r
′, ϕ, ϕ′) =

∑
ni ,m

f
ni ,m
ij (ω,R,�ϕ) eimϕ′

e−ih·r′
(6)

where R = r − r′, �ϕ = ϕ − ϕ′ and the summation is performed over all the Fourier vectors
h occurring in the crystal structure when the IC modulation is taken into account [3]:

h = nia
∗
i + mqIC. (7)

In formula (7) a∗
i denote the basic reciprocal lattice vectors, and ni and m are integers.

Note that the IC modulation in the A2BX4 group crystals is one-dimensional. According
to crystallographic orientation adopted in the work [3], it occurs along the a3 axis, so that the
wave vector qIC may be represented as follows:

qIC = γa∗
3 γ = r/s + δ (8)

where the integer numbers r and s characterize the crystal structure of the commensurate
lock-in phase (the corresponding wave vector qC = (r/s)a∗

3), and δ � 1 is a small irrational
incommensurability parameter which depends on temperature [1].

Passing from the real (coordinate) space to the Fourier one, one obtains the transform of
the equation (3),

Di(ω,k, ϕ) =
∫ ∫

εij (ω,k,k
′, ϕ, ϕ′)Ej (ω,k

′, ϕ′) dk′ dϕ′ (9)

with k denoting the wave vector of light, and

εij (ω,k,k
′, ϕ, ϕ′) = (2π)−6

∫ ∫
εij (ω, r, r

′, ϕ, ϕ′) ei(k′r′−kr) dr dr′. (10)

Substituting formula (6) into (10) yields

εij (ω,k,k
′, ϕ, ϕ′) =

∑
ni ,m

ε
ni ,m
ij (ω,k,�ϕ)δ(k′ − k − h) eimϕ′

(11)

where δ(k) is the Dirac delta function, and

ε
ni ,m
ij (ω,k,�ϕ) = (2π)−3

∫
f

ni,m
ij (ω,R,�ϕ) e−ik·R dR (12)

the microscopic Fourier components of the dielectric permittivity tensor. They are understood
to have the periodicities λh = 2π/|h| related to the corresponding reciprocal lattice vectors
h. In agreement with the comment presented above, formulae (11) and (12) testify that the
inhomogeneity of the overall tensor εij (ω,k,k′, ϕ, ϕ′) is owing to both the lattice and the IC
superlattice periodicities.

The result (11) differs from the corresponding relation [14] for the crystals without the IC
superstructure by the additional exponential factor. In the limiting case of a commensurate,
purely lattice inhomogeneity (qIC = qC , δ = 0 and h = n0ia

∗
i —see formulae (7), (8)) the
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phase of the modulation is the same at each atom. Then the latter factor becomes unity owing
to the obvious equality exp(ia∗

i · ai ) = 1, and we have the well known relation [14]

εij (ω,k,k
′) =

∑
n0i

ε
n0i
ij (ω,k)δ(k′ − k − n0ia

∗
i ) (13)

where the summation is now performed over the reciprocal lattice vectors h0 of the non-
modulated crystal.

Let us now ascertain the properties of the Fourier components εni ,mij (ω,k,�ϕ) associated
with the symmetry principle for the kinetic coefficients and other general considerations [14].
The attempt looks somewhat artificial, because the symmetry properties of the macroscopic
dielectric tensor are only of importance. Consideration of symmetry relations for the
microscopic εni ,mij (ω,k,�ϕ) components may be, however, justified by a need of comparison
with the results known for the macroscopic tensor and clarification of their origin.

The Onsager symmetry principle for the case of a nonmagnetic IC crystal and the absence
of external low-frequency (or static) magnetic field postulates that the kernel of the integral
operator in (2) or (3) should satisfy (cf [14, 17]):

εij (τ, r, r
′, ϕ, ϕ′) = εji(τ, r

′, r, ϕ′, ϕ). (14)

On the basis of formulae (6), (12) this leads to

ε
ni ,m
ij (ω,k,�ϕ) eimϕ′ = ε

ni ,m
ji (ω,−k − h,−�ϕ) eimϕ. (15)

A real physical field E should induce a real electric displacement D. A necessary and sufficient
condition for that is a real value of the kernel εij (τ, r, r′, ϕ, ϕ′) [14]. When using formulae
(4), (6) and (12), one can prove that

ε
ni ,m
ij (ω,k,�ϕ) = [ε−ni ,−m

ij (−ω∗,−k∗,�ϕ)]∗ (16)

where * denotes complex conjugation. Considering a lossless optical medium (i.e. real values
of ω and k), we have

ε
ni ,m
ij (ω,k,�ϕ) = [ε−ni ,−m

ij (−ω,−k,�ϕ)]∗. (17)

Then taking into account that εni ,mij (ω,k,�ϕ) is an even function of frequency (see, e.g.
formula (4)) and combining (15) and (17) give a final relation

ε
ni ,m
ij (ω,k,�ϕ) eimϕ′ = [ε−ni ,−m

ji (ω,k + h,−�ϕ) e−imϕ]∗. (18)

Formula (18) shows that the microscopic components of the dielectric tensor of transparent
incommensurately modulated crystals are not Hermitian, in contrast to the well known situation
with the macroscopic dielectric tensor [17]. As can be easily seen, the same result equally refers
to the microscopic dielectric tensor of the non-modulated crystals with the lattice periodicity
alone. It should be therefore reasonable to attribute the above result to inhomogeneity of
crystals on the microscopic scale (the presence of non-zero microscopic indices ni and m

in (18)). For the case of a classical commensurate crystal optics it is known [14] that a
proper procedure of macroscopic averaging allows one to express all the microscopic Fourier
components E(k + h0) of electric field in terms of the macroscopic field E(k) and thus
reduce the dielectric tensor to the ε0

ij (k) component concerned with the reciprocal lattice
vector h0 = 0 alone. According to (18), this would provide a Hermitian character of the
macroscopic permittivity tensor.
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3. Macroscopic dielectric tensor

3.1. Introduction of macroscopic dielectric tensor

Our next step is to discuss the most important points of the corresponding macroscopic
averaging in the case of crystals with the IC phases (see also [12, 14]). We start from substituting
formula (11) into (9), which becomes

Di(ω,k, ϕ) =
∑
ni ,m

∫
ε
ni ,m
ij (ω,k,�ϕ)Ej (ω,k + h, ϕ′) eimϕ′

dϕ′. (19)

In ordinary (commensurate) crystals all the vectors h0 are much longer than the typical wave
vectors k of the visible light (k+h0 ≈ h0), so that in the sum (19) the term with ε0,0

ij (ω,k,�ϕ)

labelled with zero microscopic indices, which characterizes a homogeneous optical material,
will finally remain. For the IC crystals accounting for this term only implies adopting a lowest-
order ‘space-averaged structure’ approximation (see, e.g. Dijkstra et al [12] and Kushnir [18]).
The latter turns out to be too rough, since long enough superlattice periodicities can exist in
the IC structure. That is why it is necessary to take into account the Fourier components
ε
ni ,m
ij (ω,k,�ϕ) associated with relatively long-wavelength reciprocal lattice vectors h �= 0

[3, 12, 18]. In the plane-wave modulation region, the most important of these vectors is that
determined by the small deviation of the soft-mode wave vector qIC from the corresponding
vector qC of the lock-in phase, for it affects notably different physical properties of the IC
phases (see [18–20]). It is introduced through the relations

q = s(qIC − qC) = sδa∗
3. (20)

A comparison of (8) with (20) enables us to identify q with the reciprocal lattice vectors ±h, of
which the indices are equal to n1, n2 = 0, n3 = ∓r and m = ±s. The modulation wavelength
λq related to q (λq = a3/(sδ)) exceeds by far the lattice parameters ai though is still smaller
than the light wavelength λ(λq/λ ≈ 10−2 to 10−1—see e.g. [3, 12, 18]).

Keeping those points in mind, we distinguish the contributions of the vectors h = 0, q

among all the other microscopic dielectric components and rewrite (19) as

Di(ω,k, ϕ) = ε
0,0
ij (ω,k)Ej (ω,k) + ε±s

ij (ω,k, ϕ)Ej (ω,k ± q, ϕ)

+
∑

n1,n2;n3 �=∓r;m �=±s;ni ,m �=0

ε
ni ,m
ij (ω,k,�ϕ)Ej (ω,k + h, ϕ′) eimϕ′

dϕ′ (21)

where

ε
0,0
ij (ω,k) =

∫
ε

0,0
ij (ω,k,�ϕ) dϕ′

ε±s
ij (ω,k, ϕ) =

∫
ε±s
ij (ω,k,�ϕ) e±isϕ′

dϕ′. (22)

Note that the term ε±s
ij (ω,k,�ϕ) in (22) does not contain any microscopic indicesni associated

with the underlying lattice periodicities (see formula (20)). The same is also true of the
component ε±s

ij (ω,k, ϕ) in formula (21). The non-locality dependent on the phase of the
modulation wave, which very much complicates the constitutive equation (19), has been
removed from (21) in the following way. We have expanded the field E(ω,k ± q, ϕ′) in
the r.h.s. of (19) in a Taylor series around the point ϕ and restricted ourselves to the zero-
order approximation (i.e. E(ϕ′) ≈ E(ϕ)). One can substantiate that the accuracy of the
approximation remains fairly high, since we have neglected the terms of the order of ai/λ,
while the component ε±s

ij (ω,k,�ϕ) itself includes already small modulation-dependent terms
of the same order of magnitude.
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Following the procedures suggested by Agranovich and Ginzburg [14] (see also Dijkstra
et al [12]), one can arrive at a macroscopic material equation. Namely, having neglected the
transverse parts E⊥(ω,k + h, ϕ) of the short-wavelength microscopic fields E(ω,k + h, ϕ)

(the corresponding accuracy being of the order of (ai/λ)2, since k + h ≈ h for the reciprocal
lattice vectors with the indices ni �= 0; n3 �= ∓r; m �= 0 ± s) and expressed the longitudinal
parts E‖(ω,k + h, ϕ) in terms of the fields E(ω,k) and E(ω,k ± q, ϕ), we reduce formula
(21) to the form

Di(ω,k, ϕ) = ε0
ij (ω,k)Ej (ω,k) + ε

±q

ij (ω,k,k ± q, ϕ)Ej (ω,k ± q, ϕ) (23)

where ε0
ij (ω,k) and ε

±q

ij (ω,k,k ± q, ϕ) include now the appropriate contributions from the

last sum in (21), beside of the initial contributions ε0,0
ij (ω,k) and ε±s

ij (ω,k, ϕ). The relation
(23) represents the constitutive equation for the IC crystals in the Fourier space obtained by
means of the macroscopic averaging. Now the analysis of some important consequences of
this equation is straightforward.

3.2. Characterization of mesoscopic approximation

It is worth mentioning that the result similar to (23) has been obtained by Dijkstra et al
[12]. Equation (23) corresponds to a semi-macroscopic (or ‘mesoscopic’, in terms of [12])
approximation in the description of optical properties of the IC phases, which takes into account
both the ‘homogeneous’ macroscopic field E(ω,k) and the mesoscopic field E(ω,k ± q, ϕ).
The latter is characterized by spatial periods larger than the underlying lattice parameters but
smaller than the light wavelength. That is why the mesoscopic approach is more refined when
compared with the usual ‘macroscopic’ one, which should have retained only the first term in
the r.h.s. of formula (23) governed by the point symmetry of spatially averaged structure of
the IC crystal (cf also the conclusion by Pick [5]).

When substantiating equation (23), we have confined ourselves to considering a single
mesoscopic modulation wavelength λq and a single dominant wave vector q which corresponds
to the reciprocal lattice vector h = (0; 0; ∓r; ±s). This, by the way, means that we disregard in
fact the soliton region of the IC phases where higher modulation harmonics become important.
We have also neglected the contributions of the vectors h with very high indices ni and m. The
latter procedure appears to be evident in the case of a classic crystal optics. Then increasing
the indices n0i is accompanied with decreasing a structural importance of the reciprocal lattice
vectors, as is typically observed in morphological and x-ray-diffraction investigations, and
the same is believed of the contribution of high-index Fourier components εn0i

ij (ω,k) into the
optical properties (see [3, 14]). Justification of this assumption for the IC crystals does not
seem to be so obvious, despite the point of view in [3] and [6]. Indeed, from the entire set of
the reciprocal lattice vectors it is possible to select a specific sequence of hI = (0; 0; n3;m),
for which limn3,m→∞(n3/m) = −γ (see the explanations below formula (12)). Unlike the
situation with the classical crystals, the length of those vectors decreases with increasing
microscopic indices, and the corresponding modulation wavelength λhI

can be comparable
with (or even larger than) the wavelength of the visible light [3]. This is why the importance
of the ‘ultralong-wavelength’ vector hI represents a disputable problem.

In our opinion, the morphological importance of the reciprocal vectors depends upon their
length rather than the indices themselves, and this should hold true for the IC crystals, too (see
the results by Kremers et al [21] and Kremers [22]). Similar regularities are believed to take
place also for the x-ray-diffraction reflections labelled with the vectors h, including the satellite
reflections (m �= 0). So, it is known that ‘temperature quenching’ of the x-ray-diffraction
intensity becomes more pronounced for the reflections with longer h [23]. Although theoretical
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studies of the importance of the IC-satellite crystal faces [21] showed a tendency for more
stability of the faces with lower indices, the faces referring to the vector hI were not dealt with
directly. Regarding the appropriate experimental results, both the morphological and the x-ray-
diffraction characteristics associated with the ultralong-wavelength reciprocal lattice vectors
hI still remain to be studied in much more detail. In any case, we have adopted the common
point of view concerning a negligible contribution of hI to the optical response of the IC
crystals. The additional reason for this is the analysis of the quantum-mechanical expression
for the εni ,mij (ω,k,�ϕ) components derived in a way similar to that used in [14]. These results
are reported elsewhere [24].

3.3. Symmetry properties

Symmetry properties of the tensors ε0
ij (ω,k) and ε

±q

ij (ω,k,k ± q, ϕ) imposed by Onsager’s
principle and the condition of transparency of the medium, may be clarified on the basis of (15),
(18) and (21), (22) etc. For the homogeneous components we have the well known relations
[14, 17]

ε0
ij (ω,k) = ε0

ji(ω,−k) (24)

ε0
ij (ω,k) = [ε0

ji(ω,k)]
∗ (25)

while for the mesoscopic components

ε
±q

ij (ω,k,k ± q, ϕ) = ε
±q

ji (ω,−k ∓ q,−k, ϕ) (26)

and

ε
±q

ij (ω,k,k ± q, ϕ) = [ε∓q

ji (ω,k ± q,k, ϕ)]∗. (27)

Formula (27) testifies that, even in the case of a lossless optical medium, the small modulated
contributions ε±q

ij (ω,k,k±q, ϕ) related to spatial dispersion in the IC crystal are not in general
Hermitian. Naturally, the reason for the effect is again the inhomogeneity of the crystal on the
mesoscopic scale originating from the IC character of structural modulation. Thus, the effect
cannot be neglected unless we adopt the average structure approximation.

In our opinion, the just mentioned result is not really unusual. We should recall in this
relation another fact known in electromagnetic theory of transparent non-modulated gyrotropic
crystals, a weak non-orthogonality of the normal light waves [14]. Mathematically speaking,
this means that the tensor εij (ω,k) is not self-conjugated (Hermitian), because the eigenvectors
of a self-conjugated operator referred to different eigenvalues (in other words, refractive
indices) must be mutually orthogonal (see, e.g. [25]). Restricting our attention to the first-order
spatial dispersion (or the optical activity effect) only, we can write the dielectric permittivity
in the Fourier space as [14]

εij (ω,k) = εij (ω) + iγijl(ω)kl (28)

where the purely real tensors εij (ω) andγijl(ω) are, respectively, symmetric and anti-symmetric
in the indices i and j . The tensor (28) appears to be Hermitian on inspecting its general
form with formula (25). However, closer examination shows that, in the case of the spatial
dispersion, εij (ω,k) depends on the parameters of the normal waves (namely, their wave
vectors k(1) �= k(2) which differ slightly due to different refractive indices). We have, e.g.
εx,y(ω,k) = iγxyz(ω)k(1)z and εyx(ω,k) = −iγxyz(ω)k(2)z for the k-dependent off-diagonal
component, in contradiction with the formula (25). Thus, the effect of non-orthogonality of
the normal waves arises from the fact that the dielectric permittivity of the optical medium with
spatial dispersion, when written in a real coordinate space, is not simply a material constant
but a differential operator which depends on the normal wave characteristics. In addition, the
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dielectric permittivity of the IC crystals is not rigorously Hermitian owing to a mesoscopic
inhomogeneity of the modulated medium.

3.4. Analysis of spatial dispersion phenomena

In order to understand better the consequences of the constitutive equation (23), it is convenient
to expand ε0

ij (ω,k) and ε
±q

ij (ω,k,k ± q, ϕ) in a series of k (or, equivalently, in a series of
k ± q), maintaining only the linear term:

ε
±q

ij (ω,k,k ± q, ϕ) = ε
±q

ij (ω, ϕ) + iγ±q

ij l (ω, ϕ)kl. (29)

On averaging the influence of the IC modulation, the point group which describes symmetry
of the IC phases in the A2BX4 crystals includes the inversion centre, so that the spatially
homogeneous, linear in k, terms in the dielectric tensor are forbidden (ε0

ij (ω,k) = ε0
ij (ω)).

At the same time, the inhomogeneous perturbations ε±q

ij (ω, ϕ) and γ
±q

ij l (ω, ϕ) of the dielectric
tensor imposed by the modulation are symmetry allowed [3, 12]. Therefore formula (23)
modifies to

Di(ω,k, ϕ) = ε0
ij (ω)Ej (ω,k) + [ε±q

ij (ω, ϕ) + iγ±q

ij l (ω, ϕ)kl]Ej(ω,k ± q, ϕ). (30)

Now let us pass with (30) to the coordinate space. In the following procedure, the most
important fact is that the originals of the ε±q

ij (ω, ϕ) and γ
±q

ij l (ω, ϕ) tensors should be spatially
dependent. Therefore we deal in (30) with a product of two functions of the coordinate r. For
the arbitrary originals f (t) and g(t) and their Fourier transforms F(x) and G(y) one can write
the relations (see, e.g. [26])∫ ∫

F(x)G(y − x) eiyt dx dy = f (t)g(t)

∫ ∫
F(x) iyG(y − x) eiyt dx dy = d

dt
[f (t)g(t)]. (31)

Making use of formulae (30), (31), with a formal correspondence t → r, x → ∓q, y → k,
F → ε, γ, and G → E,D leads to the equation

Di(ω, r, ϕ) = [ε0
ij (ω) + εij (ω, ϕ + q · r)]Ej(ω, r, ϕ) + ∇l[γijl(ω, ϕ + q · r)Ej (ω, r, ϕ)]

(32)

where

Ei(ω, r, ϕ) =
∫

Ei(ω,k ± q, ϕ) ei(k±q)·r d(k ± q)

εij (ω, ϕ + q · r) =
∫

ε
±q

ij (ω, ϕ) e∓iq·r d(±q) (33)

etc. For the reason of conciseness we do not write out the definitions for the originals of all
the other material tensors and field vectors in (32). The equation (32) may be further specified
after defining the exact spatial dependence of εij (ω, ϕ + q · r) and γijl(ω, ϕ + q · r). For
instance, when solving a practical problem of light propagation in the plane-wave modulation
region of the A2BX4 group crystals, one can put γijl(ω, ϕ + q · r) = γijl(ω) sin(ϕ0 + q · r),
where ϕ0 has the meaning of the initial phase value (see [3, 12, 18]).

Note that spatial derivatives in (32) refer to both γijl(ω, ϕ + q · r) and Ej(ω, r, ϕ).
Thus, a consistent consideration of spatial dispersion in incommensurately modulated crystals
leads to the conclusion that variation of the dielectric tensor in space should be accounted
for directly in the constitutive equation. It should be mentioned that the result similar to (32)
has already been obtained by Agranovich and Yudson [27], while considering the problems
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of phenomenological electrodynamics of the gyrotropic media with sharp boundaries. In our
case, however, the inhomogeneity is an intrinsic one, being concerned with long periodicities
available in the structure of the IC crystals, rather than the sharp surface boundaries and the
corresponding transition layer where the material tensors depend on spatial coordinates (see
[27]).

Finally, let us elucidate more the meaning of the symmetry properties for the dielectric
tensor derived in the previous section. Considering a simple plane electromagnetic wave field
of the form E(ω, r, ϕ) = E0(ω, ϕ + q · r) exp ik · r propagating in the periodic modulated
medium (see [18]), and the same for the electric displacement, one has instead of formula (32)

D0i (ω, ϕ + q · r) = {ε0
ij (ω) + εij (ω, ϕ + q · r) + iγijl(ω, ϕ + q · r)kl + ∇l[γijl(ω, ϕ + q · r)]}

×E0j (ω, ϕ + q · r) + γijl(ω, ϕ + q · r)∇l[E0j (ω, ϕ + q · r)] (34)

where the derivatives are meant to refer only to the expressions in square brackets. As pointed
out above, the optical activity tensor γijl(ω, ϕ + q · r) is real and antisymmetric in its first
two indices. Eventually, this can be strictly proved after analysing the equations (32) or (34)
with the aid of the Onsager principle and the condition of absence of the radiation losses in
the medium. Therefore the following relation holds true for the contribution to the dielectric
permittivity in (34) proportional to k:

�εIij = iγijl(ω, ϕ + q · r)kl = (�εIji)
∗. (35)

As seen from (35), the term �εIij is imaginary and antisymmetric in its first two indices and
so Hermitian if we disregard the remarks quoted while discussing equation (28). All the
other contributions occurring in (34) are also Hermitian, except for the term related to spatial
derivatives of the gyration tensor. It satisfies the relation

�εIIij = ∇l[γijl(ω, ϕ + q · r)] = −(�εIIji )
∗ (36)

being both real and antisymmetric in the i and j indices and thus showing anti-Hermitian
behaviour. This clarifies, at last, the content of a potential possibility for existence of a non-
Hermitian part in the dielectric function of an incommensurately modulated optical medium
predicted by formula (27).

It is worthwhile to stress that the term in the constitutive equation containing ∇l[γijl(ω, ϕ+
q ·r)] has been disregarded in all the previous studies on the subject. At the same time, it cannot
be excluded that the latter term plays a crucial role in the explanation of the macroscopic optical
activity effect observed in a number of crystals of the A2BX4 group [3, 4, 7]. Indeed, in the
plane-wave region of the IC phases the dielectric permittivity tensor will include a contribution
qlγij l(ω) cos(ϕ0 + q · r) proportional to the mesoscopic wave vector q (see subsection 3.4 and
formula (34)). The amplitude of this contribution is at least order of magnitude larger than that
of the term iklγij l(ω) sin(ϕ0 + q · r) commonly accounted for within the classical theory of
optical activity (see [14, 17]). We recall in this respect that the available theoretical models for
the optical activity in the A2BX4 family crystals just have serious difficulties when explaining
the magnitude of the effect observed in the experiments [3, 5, 6, 18]. Now one can see that
neglecting the gradient term ∇l[γijl(ω, ϕ+q ·r)] for the IC phases is in no case admissible, even
as a kind of a rough approximation. In fact, the presence of spatial derivatives of the gyration
tensor in the material equation reveals an additional mechanism for the spatial dispersion effect
in a periodic, mesoscopically modulated medium. This mechanism has to be evaluated by the
parameter ai/λq rather than the parameter ai/λ, as in ordinary cases (see, e.g. [14, 17]). Thus
the analysis performed in the present work proves once more a nontrivial origin of the optical
activity in incommensurately modulated materials, as has been pointed out in [18, 28–30].
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4. Conclusion

In this work we have shown that the IC modulation causes several extra peculiarities of the
dielectric permittivity function which determines the optical response of the crystal to an
electromagnetic wave. The material tensors of the incommensurately modulated medium,
including the tensor that describes the spatial dispersion effect, should be regarded as
depending on the phase of the modulation wave. The procedure of the macroscopic averaging
substantiated by us for the case of the IC crystals demonstrates a need in accounting for the
inhomogeneity of the medium on a mesoscopic scale. This semi-macroscopic inhomogeneity
results in the appearance of a non-Hermitian part in the dielectric tensor even in transparent,
lossless medium. The latter effect is demonstrated to originate from the term proportional to
spatial derivative of the modulation-induced gyration tensor.
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